
International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 138
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

A Novel Software Reuse Method – An
Ontological Approach

R.Jayasudha, S.Subramanian, L.Sivakumar

Abstract—Software Industries develop various projects in various domain and store it in the disk as archives. These resources are not used
to its fullest for the future reuse because of unstructured storage and retrieval methods. In this paper the Ontology based Storage and
retrieval is proposed. The developer uses domain based ontology for understanding the domain of the project and the relevant semantic
based keyword is used for retrieving the needed reusable artifacts. The folder ontology is the index to the actual archives where the needed
data is stored. The retrieved component is finally updated and integrated for successful reuse. By doing this process the time, manpower
system resources and cost will be reduced in Software development

Index Terms— Software Engineering, Software Reuse, Semantic Web, Ontology, Information Retrieval

—————————— ——————————

 1. INTRODUCTION
oftware reuse is the process of developing a
software from the already existing software
components. Software Components means any

software artifacts such as software design software
coding, software test cases etc. Software reuse is a very
old concept, but it does not play an vital role because of
unavailability of the reusable components. Reusable
components are the one which is reused. There is no
benchmark for the components to be reused.
Certification of reusable components has to be done to
have a secure component reuse.

 Reuse can be for or with reuse. Development for
reuse is the concept of developing a software
component in an generalized way so it can be reused
for the further projects. All the aspects of the reusable
components are taken into consideration and the
reusable components are developed.

 Development with reuse is the concept of actual
reuse where in the reuse of actual software component
has been taken place. The Software’s developed with
the existing software reusable components.

 The advantages of Software reuse are it saves the
cost, reduces the effort, reduces bug. The main goal

of Software Reuse is to reduce cost of production by
replacing creation with recycling. The main problem
with the reuse are identification of reusable

components, Storage of reusable components,
Knowledge based reusable repositories, Searching the
reusable components, Modification and integration of
reusable components with the current software
development.

 In this paper the various software reuse methods
has been discussed. This paper has been classified into
three sections, Section 1 describes about the different
types of existing software. Section 2 describes about the
proposed method and its advantages, Section 3 gives
the result and discussions.

2. LITERATURE SURVEY
Some of the other specific types of software reuse
discussed by Ian Sommer in his book are

2.1 Application system reuse
The whole application system may be reused either by
incorporating it without change into other Systems
(COTS reuse) or by developing application families.

2.2 Component reuse
Components of an application from sub-systems to
single objects may be reused.

2.3 Object and function reuse
Software components that implement a single well-
defined object or function may be reused.

2.4 Design Patterns
Generic abstractions that occur across applications are
represented as design patterns that show abstract and
concrete objects and interactions.

2.5 Application Framework
Collections of abstract and concrete classes that can be
adapted and extended to create application systems is
called Application Framework..

S

————————————————
• Jayasudha.R, Phd Scholar, Anna University, Chennai,

Tamilnadu, India
jayasudhasubburaj@gmail.com

• Dr.S.Subraminian, Vice Chancellor, Karpagam Univeristy,
Coimbatore, Tamilnadu, India, drsraj@gmail.com

• Dr.L.Sivakumar, Vice Principal, Sri Krishna College of
Engineering and Technology, Coimbatore, Tamilnadu, India,
vp@skcet.ac.in

IJSER

http://www.ijser.org/
mailto:drsraj@gmail.com

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 139
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

2.6 Component based development
Systems are developed by integrating components that
conform to component-model standards.

2.7 Aspect Oriented Software Development
Shared components are woven into an application at
different places when the program is compiled.

2.8 Application product lines
An application type is generalized around a common
architecture so that it can be adapted in different ways
for different customers.

2.9 COTS Integration
Systems are developed by integrating existing
application systems.

2.10 Legacy System Wrapping
Legacy system can be overwrapped by defining a set of
interfaces.

2.11 Configurable vertical Application
A generic system is designed so that it can be
configured to the needs of specific system customers.

2.12 Service Oriented System
Systems are developed by linking shared services that
may be externally provided.

2.13 Program Libraries
Class and function libraries implementing commonly-
used abstractions are available for reuse.

2.14 Program generators
A general system embeds knowledge of a particular
types of application and can generate systems or
system fragments.

In the [6] paper focused only on the CBS module of
Knowledge-Based Tutoring System for Software Reuse
Practices.

 A CBS-SRRM provides software engineers with .a
way to be tutored using positive lessons learned by
their organizations. Our research focuses on achieving
more effective means for software development
organizations to find alternative educational (training)
solutions to problems in software reuse practices. This
system does not support distance learning and reuse
self-assessment.

 Domain analysis is the process of recording the
commonalites and variabilities in a set of related

software systems. Domain Implementation methods
can take many forms including components, domain
specific languages including little languages and
application generators. All of these methods have been
used in practice. Several examples of successful reuse
component collections have already been described. An
application generator creates a software system, or a
large portion of a software system, based on a high
level specification of the desired system. It shows that
the generator encodes domain knowledge and design
knowledge, and draws on components to produce code
for a new system in a domain.

 The paper introduced a methodology for applying
machine learning techniques for systematic data
exploration. Furthermore, it introduces a variation of
an attribute selection technique, which is important in
analysis of data with high dimensionality, such as the
Reuse data set. One obstacle in the search for a
software reuse model is the scarcity of the data.

 While BTC’s results and their specific business
needs may be unique, it is likely that the business and
technology practices supporting reuse may be
generalizable to other banks and other technology
users. Good system architecture, supporting reuse, and
an established business case that identify the business
value of the reuse were fundamental to establishing the
global reuse accomplished by BTC, and should be
readily scalable to smaller and less global
environments. Other research subjects within the
banking industry may also be available and should be
studied to identify commonalities and variations from
the BTC/BigBank success model.

 The growing interest of software reuse by software
organizations makes adoption and evaluation of reuse
an essential activity [9]. Many organizations struggle in
their attempts to select appropriate reuse practices
(methods, techniques and tools support) in their
processes. In this paper various reuse assessment
methods are evaluated.

 In the paper [10], the architecture-centric software
processes that results in traceable component model. It
differs with the traditional software process models:

 Firstly, architectural patterns are the key elements of
software process and the means to express the work
products of the different phases. Secondly, patterns are
used to describe the development expertise and
experience and become important parts of component
model. Software reuse based on patterns means that
the development expertise and experience is reused

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 140
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

also. Thirdly, the component relationships are specified
explicitly, and the traceability between different
models at different abstraction levels is created as the
side effect of development process of the component
model.

 The main problem with the existing these methods
are it increases the maintenance cost, there is lack of
tool support, the programmers point of view not-
invented here syndrome. Apart from this the main
problem of unsuccessful software reuse is that the
creation of component libraries or repository, retrieval
of the needed relevant component, understanding and
adaptability of the software components to the existing
system.

3. PROPOSED SYSTEM
Ontology is an explicit specification of a
conceptualization. The term is borrowed from
philosophy, where an Ontology is a systematic account
of Existence. For AI systems, what "exists" is that which
can be represented. When the knowledge of a domain
is represented in a declarative formalism, the set of
objects that can be represented is called the universe of
discourse. This set of objects, and the describable
relationships among them, are reflected in the
representational vocabulary with which a knowledge-
based program represents knowledge. Thus, in the
context of AI, we can describe the ontology of a
program by defining a set of representational terms. In
such an ontology, definitions associate the names of
entities in the universe of discourse (e.g., classes,
relations, functions, or other objects) with human-
readable text describing what the names mean, and
formal axioms that constrain the interpretation and
well-formed use of these terms. Formally, an ontology
is the statement of a logical theory.[1]

 Ontologies are often equated with taxonomic
hierarchies of classes, but class definitions, and the
subsumption relation, but ontologies need not be
limited to these forms. Ontologies are also not limited
to conservative definitions, that is, definitions in the
traditional logic sense that only introduce terminology
and do not add any knowledge about the world
(Enderton, 1972) . To specify a conceptualization one
needs to state axioms that do constrain the possible
interpretations for the defined terms.

3.1 ONTOLOGY BASED SOFTWARE REUSE
The new framework based Ontology Based Software
Reuse (OBSR) which represents a concept as a node in
ontology. Ontology is a description (like a formal

specification of a program) of the concepts and
relationships that can exist for an agent or a
community of agents. There are many ways to
represent concepts and conceptual relationships in
ontology. In this case, semantic network representation
as in directed labeled graph. It is a simplified
conceptual graph. Representing conceptual
relationships as edges between nodes in the graph
rather than representing them as nodes like in
conceptual graphs. The detailed information on
conceptual graphs can be found in related work
section. Our ontology representation schema is defined
below:

Definition: Our Ontology Representation

G = (V, E)

V = <Concept Identifier, Concept Label, [Concept
Description] >

E = <u, v, relationshipName> where u,v Î V

Concept Identifier = <literals and numbers>

Concept Label = < string literal>

Concept Description = <character string>

G represents the semantic network graph consisting of
vertices V as concepts and edges E as relationship
among concepts. The Proposed technique currently
using Code repository for ontology but the general
architecture of the system applies to other kinds of
ontology’s as well.

3.2 SOFTWARE DEVELOPMENT HIERARCHY
Software development lifecycle plays a major role in
the software development. The Fig 1 explains about the
hierarchy of the software development process in such
a way that at the end of every process, the knowledge
was stored in the form of documentation which will be
the source for the future reuse. The major software
artifacts are reusable components are stored in
Software Requirement Document, Design document,
Source Code, Testing document, various other user
manuals etc.,

IJSER

http://www.ijser.org/
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html#1

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 141
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Figure 1 Software Development Hierarchy

3.3 PROPOSED ARCHITECTURE
The Fig 2 proposes the noval architecture for the
software development in order to make reuse a
successful factor. The steps involved in the process are
Step 1: Requirement Engineering helps to form the
requirement query for the current project.
Step 2: The Query analyzer helps o identify the domain
of the project. The Domain Ontology helps to identify
the various related terms in the domain.
Step 3: The refined query is now used for indentifying
the needed component in the Folder Ontology which
an index of the final storage of the data in the disk.
Step 4 : The retrieved objects are updated according to
the current need of the project.
Step 5: Integration and the Implementation takes place
once the needed reusable components are successfully
retrieved.

Figure 2. Ontology Based Software Reuse

The main advantage of this method is the usage of two
different ontologies at the different phases namely
domain ontology and the Folder ontology. Domain
Ontology helps to retrieve the domain related term for
the query. Folder ontology create the index of the
actual storage of the data, which helps in the easy
retrieval of the corresponding component.

4. RESULTS AND DISCUSSION
The dataset for the experiment has been taken from the
students final year project sets. Around 40 projects of
different domain are taken and stored in the disk in the
form of archives are used for discussion. Some of the
reuse metrics which proposed by Davis [4] in his Reuse
Capability Model are

5.1 Reuse proficiency (RP), which is the ratio of the
value of the actual reuse opportunities exploited to the
value of potential reuse opportunities,

5.2 Reuse efficiency(RE) , which measures how much
of the reuse opportunities targeted by the organization
have actually been exploited and
5.3 Reuse effectiveness (REF), which is the ratio of
reuse benefits to reuse costs.

 RP(%) RE(%) REF(%)

Keyword Based

25

35

50

Ontology Based

50

70

100

Table 1 Key word based Vs Ontology Based

Component Search (Reuse metrics)

From the table 1 it is depicted that the reuse
proficiency, efficiency and effectiveness is less in the
keyword based without using the semantic of the
query and the ontology, whereas the Ontology based
reuse gain more favorable reuse metrics.

 Precision takes all retrieved documents into
account, but it can also be evaluated at a given cut-off
rank, considering only the topmost results returned by
the system. This measure is called precision at
n or P@n. High precision means that an algorithm
returned substantially more relevant results than
irrelevant. The table 2 depicts the comparison of the
Keyword based and Ontology based retrieval
precision. It is understood from the study that the
Ontology based retrieval has got good precision over
the other.

 Domain Ontology has been created for the domain
Banking, Payroll, Insurance, Inventory and Marketing.
These five Domain Ontology is created using the tool
Protégé and finally manipulated for the purpose of
query expansion.

Query
No

Query Keyword
Based

Ontology
Based

Q1 Deposit Module 0.3 0.7
Q2 Payslip Generation 0.4 0.73
Q3 Premium

Updation
0.45 0.8

Q4 Product
Maintenance

0.56 0.5

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 142
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Q5 Sales Report 0.6 1.0
Table 2 Key word based Vs Ontology Based

Component Search (Precision)
 The Graph shown in the fig 3 explains clearly the
relationship between the Ontology based Software
Reuse and the Keyword based. The Keyword based has
got less precision which reduces the overall availability
of the reusable components this leads to less
reusability. The availability of the relevant reuse
components are more in the case of the Semantic based
reuse, thus improves the ability of the reusability in the
software development life cycle.

Fig 3 Key word based Vs Ontology Based

4 CONCLUSION
 Software companies produce lots of reusable
components or artifacts which is stored in the
structured way. The unstructured storage leads to
unsuccessful reuse, because of the unavailability of the
needed knowledge. The proposed system solves the
relevant problem by using the Ontology for the
Semantic based retrieval and Storage.

 The Domain and Folder Ontology helps in the
finding the needed and available relevant reuse
artifacts for the current project. In future the
distributed based storage system is proposed in order
to improve the reuse efficiency, even though the
reusable knowledge are distributed geographically.

ACKNOWLEDGMENT
Our Sincere thanks to the management and Principal of
the corresponding colleges for their support.

REFERENCES
[1]. Aileen Cater-Steel Stephano Ah-Fock ,” Reuse: Can it

Deliver Competitive Performance?”.
[2]. Anguswamy, R. and Frakes, W. B., An Exploratory

Study of One-Use and Reusable Software Components,
International Conference of Software Engineering and
Knowledge Engineering, SEKE'12, San Francisco, USA,
1-3 July 2012.

[3]. Florinda Imeri1, Ljupcho Antovski,”An Analytical View
on the Software Reuse”, ICT Innovations 2012 Web
Proceedings ISSN 1857-7288.

[4]. Hafedh Mili, Fatma Mili, and Ali Mili,” Reusing
Software: Issues and Research Directions”, IEEE
Transactions On Software Engineering, Vol 21, No. 6,
June 1995

[5]. Mandava Kranthi K B M Konda Dr. K. Thammi Reddy
B. Ravi Kiran,”A Systematic Mapping Study on Value
of Reuse”, International Journal of Computer
Applications (0975 – 8887) Volume 34– No.4, November
2011 .

[6]. N. Nada, L.Luqi, M. Shing, D. Rine, E. Damiani, S.
Tuwaim,” Software Reuse Technology Practices and
Assessment Tool-Kit”.

[7]. Paul D. Witman Terry Ryan,” Innovation in Large-
Grained Software Reuse: A Case from Banking”.

[8]. Rattikorn Hewett,” Learning from Software Reuse
Experience”.

[9]. Vinicius Cardoso Garcia, Liana Barachisio Federal
University of Pernambuco,” Towards an Assessment
Method for Software Reuse Capability”, Eighth
International Conference on Quality Software 2008.

[10]. Wang Hong,” Architecture-Centric Software Process
for Pattern Based Software Reuse”, IEEE 2009.

[11]. William B. Frakes,” Practical Software Reuse”,IEEE
2000.

[12]. William B. Frakes and Kyo Kang,”Software Reuse
Research: Status and Future”, IEEE Transactions On
Software Engineering, Vol. 31, No. 7, July 2005.

Precision

IJSER

http://www.ijser.org/

	Definition: Our Ontology Representation
	4. Results and Discussion
	4 Conclusion
	Acknowledgment
	References

